Effect of polyelectrolyte structure on protein-polyelectrolyte coacervates: coacervates of bovine serum albumin with poly(diallyldimethylammonium chloride) versus chitosan.
نویسندگان
چکیده
Electrostatic interactions between synthetic polyelectrolytes and proteins can lead to the formation of dense, macroion-rich liquid phases, with equilibrium microheterogeneities on length scales up to hundreds of nanometers. The effects of pH and ionic strength on the rheological and optical properties of these coacervates indicate microstructures sensitive to protein-polyelectrolyte interactions. We report here on the properties of coacervates obtained for bovine serum albumin (BSA) with the biopolyelectrolyte chitosan and find remarkable differences relative to coacervates obtained for BSA with poly(diallyldimethylammonium chloride) (PDADMAC). Coacervation with chitosan occurs more readily than with PDADMAC. Viscosities of coacervates obtained with chitosan are more than an order of magnitude larger and, unlike those with PDADMAC, show temperature and shear rate dependence. For the coacervates with chitosan, a fast relaxation time in dynamic light scattering, attributable to relatively unrestricted protein diffusion in both systems, is diminished in intensity by a factor of 3-4, and the consequent dominance by slow modes is accompanied by a more heterogeneous array of slow apparent diffusivities. In place of a small-angle neutron scattering Guinier region in the vicinity of 0.004 A-1, a 10-fold increase in scattering intensity is observed at lower q. Taken together, these results confirm the presence of dense domains on length scales of hundreds of nanometers to micrometers, which in coacervates prepared with chitosan are less solidlike, more interconnected, and occupy a larger volume fraction. The differences in properties are thus correlated with differences in mesophase structure.
منابع مشابه
Heterogeneity of polyelectrolyte diffusion in polyelectrolyte-protein coacervates: a 1H pulsed field gradient NMR study.
Proton pulsed field gradient (PFG) NMR was used to study the diffusion of poly(diallyldimethylammonium chloride) (PDADMAC) in coacervates formed from this polycation and the protein bovine serum albumin (BSA). Application of high (up to 30 T/m) magnetic field gradients in PFG NMR measurements allowed probing the diffusion of PDADMAC on a length scale of displacements as small as 100 nm in coace...
متن کاملEffects of protein-polyelectrolyte affinity and polyelectrolyte molecular weight on dynamic properties of bovine serum albumin-poly(diallyldimethylammonium chloride) coacervates.
Bovine serum albumin (BSA) and poly(diallyldimethylammonium chloride) (PDADMAC) spontaneously form, over a range of ionic strength I and pH, dense fluids rich in both macroions. To study their nanostructure, these coacervates were prepared at low I and high pH (strong interaction) or at high I and lower pH (weaker interaction), with polymer MWs ranging from 90K to 700K, and then examined by dyn...
متن کاملMesophase Separation and Probe Dynamics in Protein-Polyelectrolyte Coacervates
Protein–polyelectrolyte coacervates are self-assembling macroscopically monophasic biomacromolecular fluids whose unique properties arise from transient heterogeneities. The structures of coacervates formed at different conditions of pH and ionic strength from poly(dimethyldiallylammonium chloride) and bovine serum albumin (BSA), were probed using fluorescence recovery after photobleaching. Mea...
متن کاملStiff chains inhibit and flexible chains promote protein adsorption to polyelectrolyte multilayers.
We tested the hypothesis that the level of protein adsorption onto polyelectrolyte multilayers (PEMs) is influenced by the chain stiffness of the polymers forming the multilayer. The implication being that by altering the chain stiffness, PEMs can be formed that promote or inhibit protein adsorption. Protein adsorption to PEMs consisting of flexible and semi-flexible polyelectrolytes was invest...
متن کاملProtein binding on polyelectrolyte-treated glass. Effect of structure of adsorbed polyelectrolyte.
Polyelectrolyte adsorption can be used to modify the surface of chromatographic packings in order to make them more suitable for protein separations. We studied the binding of proteins to controlled pore glass (CPG) on which the polycation poly(diallyldimethylammonium chloride) (PDADMAC) was noncovalently immobilized through electrostatic interaction. We found that the selectivity of PDADMAC fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomacromolecules
دوره 8 11 شماره
صفحات -
تاریخ انتشار 2007